

Structural Metal Bonding At Cessna Aircraft

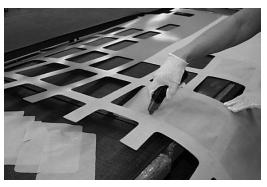
Discussion Points

- Cessna Experience
- Metal Bonding Process
- Process Control Philosophy
- Risk and Risk Mitigation
- Conclusions

Cessna Experience

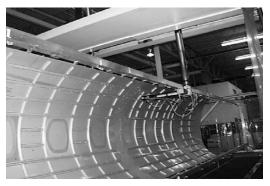
- 1960s Secondary structure
- 1970s Primary structure, integral fuel tanks
- 1980s Fully bonded airframe
- 40 Years Experience and 6000+ airplanes

Cessna Aircraft


Metal Bonding Process


Phosphoric acid anodize

Bond primer application

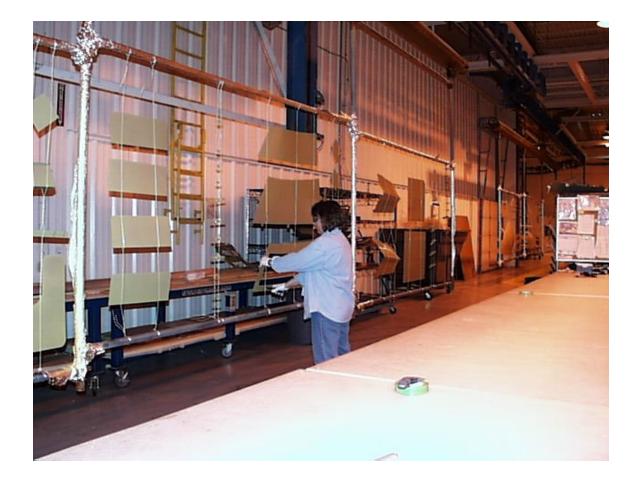

Lay-up

Bagging and tooling

Autoclave cure

Post-cure inspection

Cessna Aircraft


Phosphoric Acid Anodize

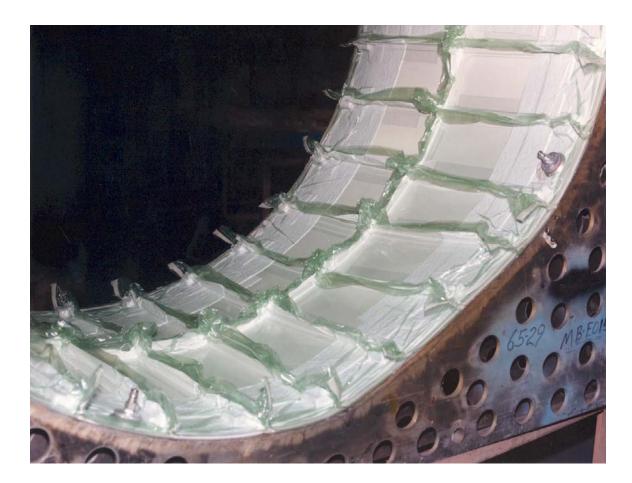
•Automated process line Clean, rinse, PAD, rinse, PAA, rinse, dry •Rate issues Surface cleaning, water quality, solution aging •Process control -Data acquisition of spec parameters: temp, time, voltage, current -Water break inspections -Current draw inspection -Wedge crack extension -Surface morphology -Periodic training

Cessna Aircraft

Bond Primer Application

•Manual airless spray Inspect, spray, flash, cure, inspect •Rate issues Environment control, primer agitation, operator training •Process control -Data acquisition of spec parameters: time, temp, RH, monitoring of air quality -Visual, polarized filter -Period operator quals -Visual and thickness -Wedge crack extension

Cessna Aircraft


Lay-up

•Adhesive application Inspect, cut, apply, inspect, assemble •Rate issues Environment control, fit checks, operator training, •Process control -Recording of spec parameters: temp, RH, air quality, Out-timetracking -Buddy check for paper -Visual -Shop instructions -Controlled expendables

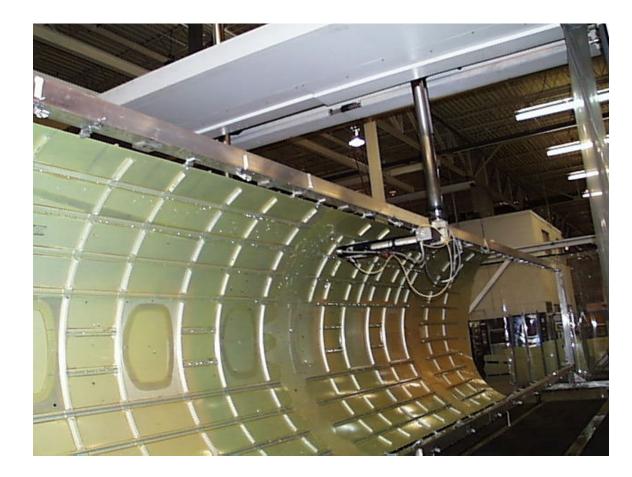
Cessna Aircraft

Bagging and Tooling

Bagging Breather, sealant, bag, vacuum check
Rate issues Operator training, tool maintenance
Process control -Spec parameters: leak rate

Cessna Aircraft

Autoclave Cure



Cure cycle Load, instrument tools, leak check, start cycle, unload, debag, deflash
Rate issues Tool maintenance
Process control

Data acquisition of spec parameters: temp, pressure, time, leak rate
Periodic shear and peel tests

Cessna Aircraft

Post-Cure Inspection

•Inspection Visual for FOD and other anomalies, ultrasonic inspection •Rate issues **Operator training** •Process control -Technician certification -Standards and calibration -Initial process qualification and subsequent requalifications for each bond assembly

Process Control Philosophy

"End of Process" inspection alone is insufficient for assuring structural integrity.

Risk

- A structural delamination and/or a bond failure can result in:
 - Safety issues
 - Customer dissatisfaction
 - Loss of confidence
 - Customers
 - FAA, other regulatory authorities
 - Degradation of reputation and Brand
 - Product liability (financial)

Risk Mitigation

- Process Control Mentality
 - Specification adherence
 - In process monitoring
 - Personnel training and qualification
 - NDI
 - Initial assembly qualification and subsequent requalifications
- Proper Facilities and Equipment
 - Process line design and control
 - Tooling design and maintenance
 - Autoclave design and control

Risk Mitigation

- Experienced and knowledgeable staff
 - Manufacturing and Facilities
 - Quality and Inspection
 - M&P and other Engineering
- Process and product improvements as a result of field experience – Lessons Learned

Conclusions

- Benefits outweigh the risks if properly managed
 - Documented and audited processes
 - Process control mentality
 - Proper facilities and equipment
 - Active maintenance programs
 - Experienced staff that understands:
 - How to do it
 - Why they are doing it